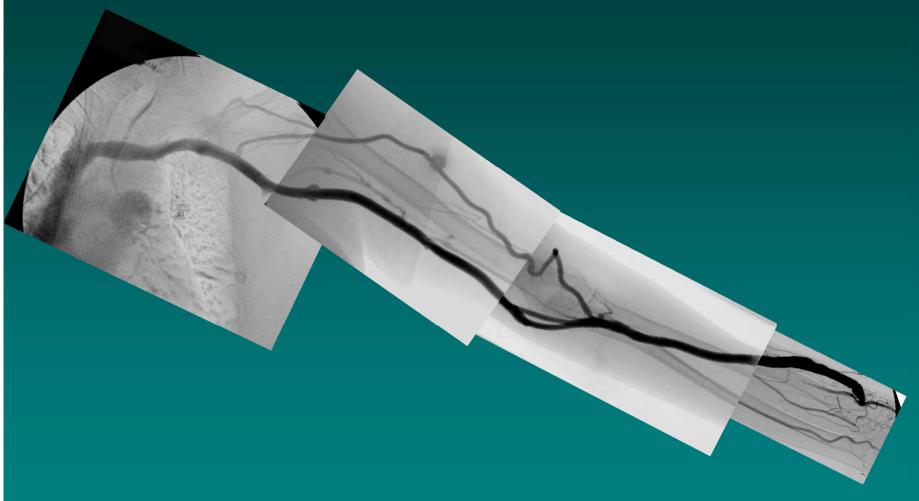

Management of the Immature Fistula

Theodore F. Saad, M.D.


Nephrology Associates, P.A.

Newark, Delaware

"Mature" Fistula?

What is a "Mature" AVF?


- Vein able to be safely and reliably accessed 3 times per week with two 17, 16, or 15 ga. dialysis needles
 - Diameter: >6 mm
 - Depth: <6 mm</pre>
 - Length: >6 cm
 - Straight
 - Vessel Wall quality
 - "Arterialization"

- Fistula flow sufficient to deliver necessary rate of blood to the dialysis circuit
 - >150% of desired pump speed: e.g. 400 ml/min
 - >600 ml/min
- Dependent upon
 - Cardiac output
 - Blood pressure
 - Artery size & quality

Fistula Maturation & Adequacy of Hemodialysis

- Adequacy as assessed by urea clearance
- Kt/V: Fraction of total body distribution volume cleared during dialysis session equals
 - K_{urea} = Dialyzer urea clearance
 - Td = Dialysis time
 - V_{urea} = Urea distribution volume
 - Approximates total body water
- Target Kt/V >1.4

KT/V & Adequacy: One Size Doesn't Fit All

KT/V & Adequacy: One Size Doesn't Fit All

100 kg patient: Kt/V=1.4

- Urea volume = 60,000 ml
- Time = 240 minutes
- $K_{urea} = 350 \text{ ml/min}$

• $K_{urea} = 175 \text{ ml/min}$

• Time = 240 minutes

Less efficient dialyzer urea clearance at higher blood flow rates

- Blood flow to dialyzer
 - 450-550 ml/min
 - ≥15 gauge needles

Blood flow to dialyzer

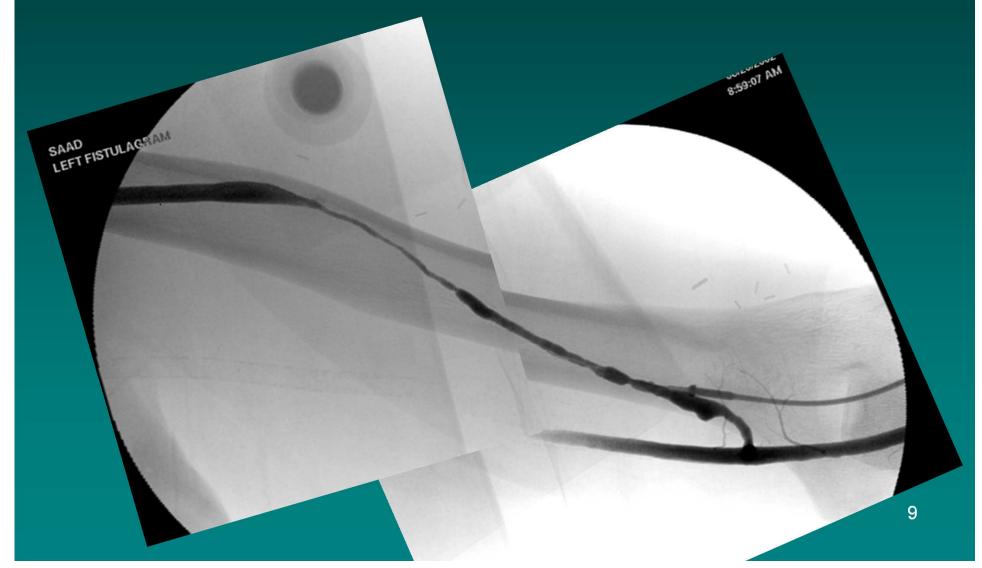
50 kg patient: Kt/V=1.4

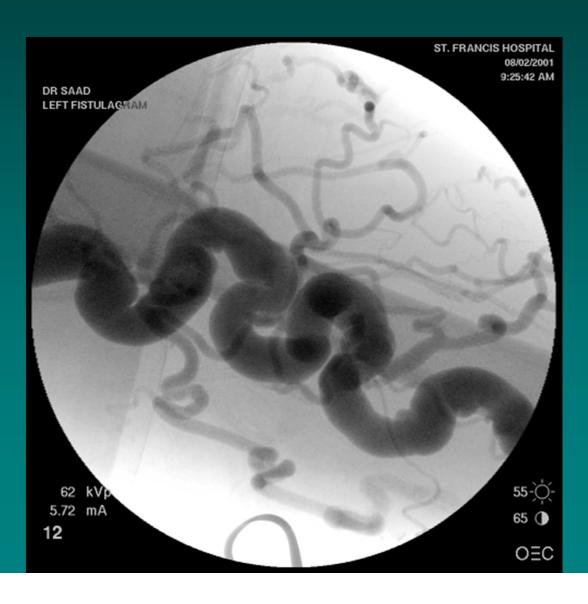
Urea volume = 30,000 ml

- 200-250 ml/min
- 17 gauge needles

Requires access blood flow 50% greater than dialyzer pump speed

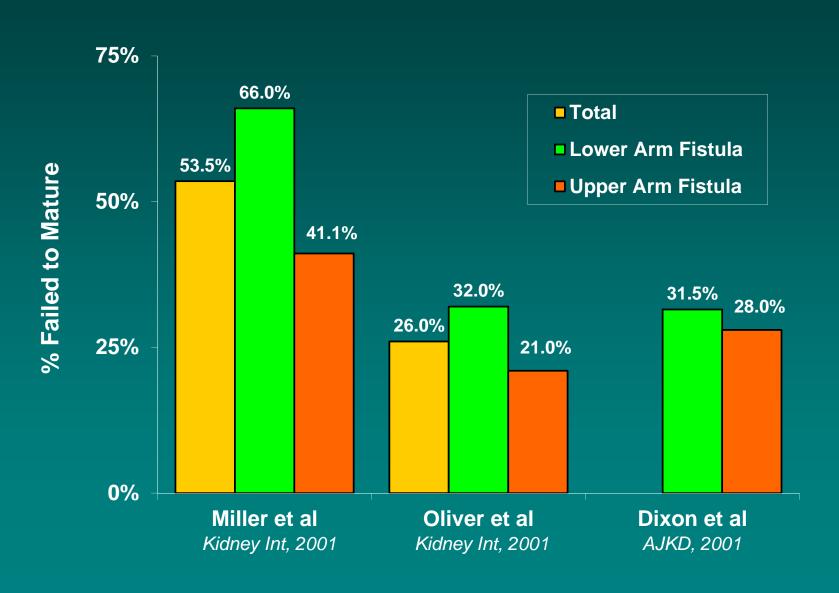
- Access flow >750 ml/min
 Access flow 300 ml/min


AVF Maturation:Hemodynamic Factors


AVF Maturation: Humoral Factors

- Adaptive Remodeling
 - Reorganization of cellular and extracellular components
- Role of Endothelial Cells:
 - De-endothelialized vessels fail to increase diameter in response to increased blood flow (1, 2)
- Shear stress:
 - Apical surface of the endothelial cell
 - Transduction of hemodynamic forces
 - Subendothelial compartment
 - Nitric oxide, prostacyclin
 - Activation of a variety of transcription factors and matrix metalloproteinases (3)
 - NO and MMPs: Appear to play a major role.
- 1- Tohda et al:. Arterioscler Thromb 12:519-528, 1992.
- 2- Langille BL, O'Donnell F: Science 231:405-407, 1986
- 3- Ballermann et al: Kidney Int 67:S100-S108, 1998

LUA Transposed Cephalic AVF: Delayed Maturation



Native Arteriovenous Fistula: Patterns of Maturation

Some Fistulas Fail to Mature

Effect of clopidigrel (Plavix[™]) on Early Failure of AV Fistulae

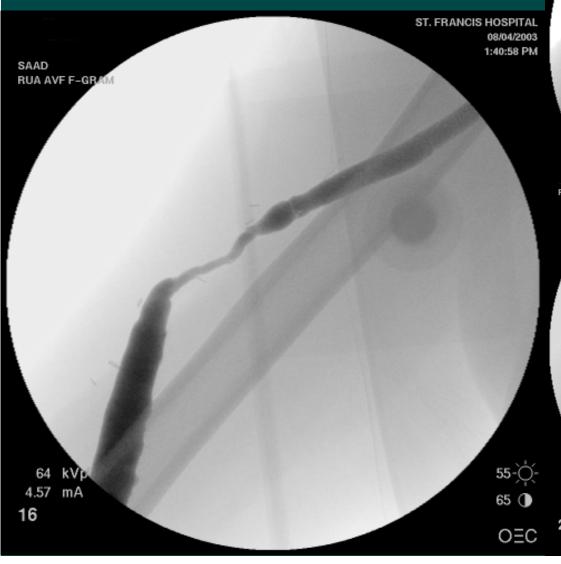
	No. (%) of		
	Clopidogrel (n = 385)ª	Placebo (n = 373) ^a	Relative Risk (95% Confidence Interval) ^b
Suitability failure (all patients)	238 (61.8)	222 (59.5)	1.05 (0.94-1.17)°
By location Forearm fistula	144 (66.9)	137 (64.0)	1.05 (0.92-1.20)
Upper arm fistula	94 (55.3)	85 (53.4)	1.05 (0.87-1.27)
By failure reason Fistula abandoned with no expectation of future use	115 (29.9)	134 (35.9)	0.85 (0.69-1.03)
Fistula not yet in use despite treatment with dialysis	57 (14.8)	47 (12.6)	1.17 (0.83-1.66)
Fistula in use during ascertainment period but failed to meet suitability criteria	66 (17.1)	41 (11.0)	1.56 (1.08-2.24)

^aFifty-six of the 441 patients randomized to clopidogrel and 63 of the 436 patients randomized to placebo were not included because suitability was not ascertained (Figure).

b Relative risks were stratified for fistula location and center.

 $^{^{\}circ}P = .40.$

Physical Training: Myth of the Red Rubber Ball

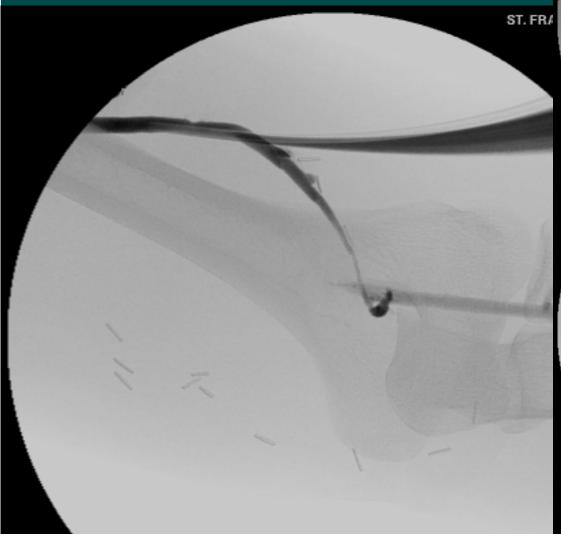

- Immediate effects
- Oder (ASAIO 2003)
 - 23 patients
 - AVF 2.8 months old
 - 5 minutes hand exercise
 - Red rubber ball
 - Fistula diameter increased 9.3%
 - 20/23 patients

- Long-term effects
- Rus (Blood Purif 2003)
 - 14 ESRD patients
 without AVF
 - 8 weeks Handgrip training
 - Increased
 - Radial artery diameter
 - Maximum vein diameter

Failure to Mature

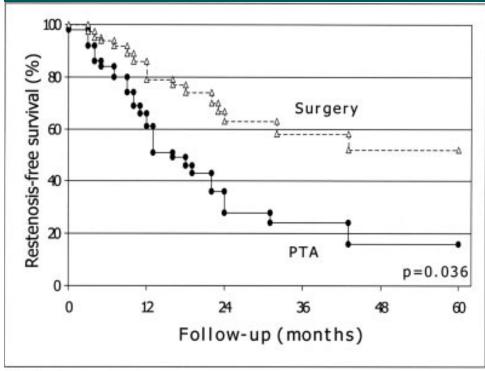
- Focal venous stenosis
 - Pre-existing vein damage or disease
 - Surgery-related vein damage
 - Juxta-anastomotic or "swing-point" stenosis
- Diffuse vein stenosis
 - Intrinsic vessel disease
- Accessory or "competing" veins
- Hemodynamic factors
 - Arterial calcification
 - Poor cardiac output and/or blood pressure
- Failure to squeeze the ball

"Swing-point" Stenosis

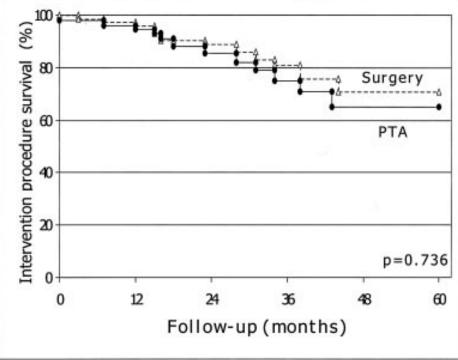


ST. FRANCIS HOSPITAL

Juxta-Anastomotic Stenosis

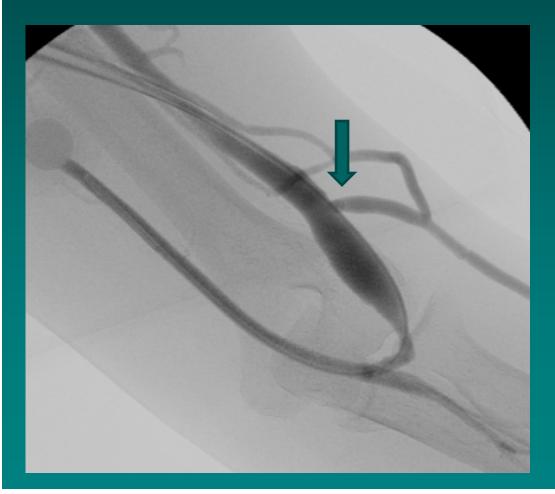


Endovascular *versus* Surgical Preemptive Repair of Forearm Arteriovenous Fistula Juxta-Anastomotic Stenosis: Analysis of Data Collected Prospectively from 1999 to 2004


Nicola Tessitore,* Giancarlo Mansueto,[†] Giovanni Lipari,[‡] Valeria Bedogna,* Stefano Tardivo,[§] Elda Baggio,[‡] Daniela Cenzi,[†] Giovanni Carbognin,[†] Albino Poli,[§] and Antonio Lupo*

*Divisione di Nefrologia, [†]Dipartimento di Radiologia, [‡]Dipartimento di Scienze Chirurgiche, and [§]Dipartimento di Medicina e Sanità Pubblica, Università di Verona, Verona, Italy

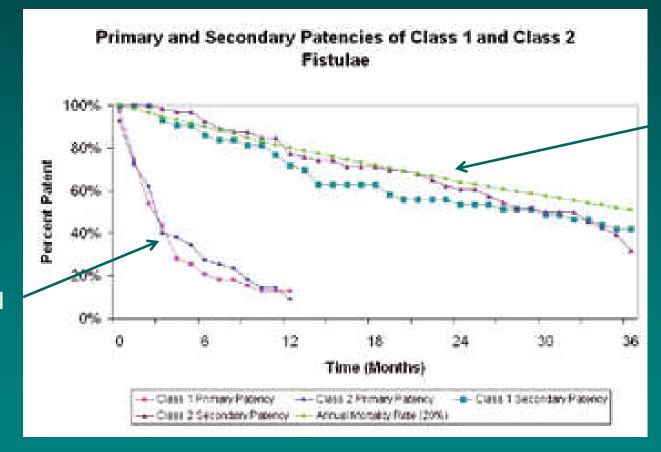
Primary Patency


Assisted Primary Patency

AVFsat	risk:				
Surger	y 21	19	8	5	4
PTA	43	19	7	5	2

Wisatri	sk:				
argery	21	20	11	8	5
TΑ	43	32	19	13	6

AVF Maturation: Competing or Accessory Vein Ligation


"Balloon Maturation" Definition

- Use of balloon angioplasty to achieve longsegment vein dilation that has not occurred spontaneously
 - Involves the intended fistula puncture zone
 - Sequentially larger balloons
- Distinct from treatment of focal stenosis
 - Juxta-anastomotic or swing-point
- Limited data

Staged Balloon-Assisted Aggressive Maturation (BAM)

- 122 patients retrospective
 - Class I
 - Large (6-8 mm) vein
 - > 6 mm deep
 - Class II
 - Small (2-5 mm) vein
- Sequential dilation
 - Angioplasty at 2-4 week intervals
 - Start with at least 6-7 mm diameter balloon
 - Successively larger balloons :10-12 mm (max 16 mm)
 - Long length balloons for long segment lesions
 - Repeated until fistula usable
 - Successful maturation: 118/122 (96.7%)

Staged Balloon Assisted Aggressive Maturation Protocol

Secondary Patencies

Class I & II Primary Patency

Interventions to Improve Fistula Maturation Rates

- Meta-analysis
 - 12 Reports, 745 patients
 - Variety of surgical and percutaneous methods
 - Angioplasty, stent, thrombectomy
 - Branch vein ligation
 - Surgical revisions
 - 86% success in achieving functional fistula
 - At 1 year
 - Primary patency 51%
 - Secondary patency 76%

	Table IV.	Efficacy	of early	nonmaturation	treatment
--	-----------	----------	----------	---------------	-----------

		AVF age, mon	1	Detectei	d lesion	ıs			Techniqu	ues use d			Success	1Υ PP*	IΥ SP ^b
First author	Υear	Mean (range)	AI	JAn	VΟ	CV	AccV	PTA	AVE	AVL	Surg	Rev	%	%	%
Turmel-											(1) Al				
Rodrigues ¹⁴	2001	2.5 (1.0-6.5)	4	38	27	0	0						97	39	79
Song 15	2006	2.7 (1.0-13)	0	18	4	0	0						96	28	85
Falk ¹⁶	2006	2.0 (0.3-8.5)	16	32	33	2	21	83	0	21	9	0	74		
Shin ¹⁷	2005	1.5 (1.3-3.5)	1	13	5	1	14	19	0	0	0	0	74	61	82
Nassar ¹⁸	2005	4.6 (2-24)	62	76	95	10	35						83	62	95
Clark ¹⁹	2007	3.5 (0.7-14)	6	37	44	2	4	85	1	3	0	0	88	34	72
Beathard ²⁰	2003	4.7	42	15	20	9	46	110	34	12	0	0	92	68	
Faiyaz ²²	2002	4.0 (1.7-7.5)											88		
Asif ²³	2006							69	0	0	0	0	93	46	94
McLafferty ²⁴	2007							23	0	2	1	12	84		
Beathard ²¹	1999	5.0 (1-13.9)	0	17	4	0	21	21	0	52	5	0	83		75
Singh ²⁵	2007						44						78		
Sum			131	246	232	24	141	410	35	90	15	12			
Percentage, %			17	32	30	3	18	73	6	16	3	2			
Weighted															
average		3.2											86	51	76

..., Signifies that data were not clearly reported; AI, arterial inflow stenosis, located in the radial or brachial artery up until the start of the anastomosis; CV, central venous stenosis, located in the subclavian vein, innominate vein, or superior vena cava; AccV, accessory veins; AVE, accessory vein embolization; AVF, arteriovenous fistula; AVI., accessory vein ligation, including percutaneous ligation and ligation through incision; JAn, juxta-anastomosis stenosis, located in the initial 5 cm (2 inches) of the AVF starting just proximal of the anastomosis; PTA, percutaneous transluminal angioplasty, including balloon dilation, cutting balloon dilation, stenting, and endovascular thrombus aspiration techniques; Rev, revision surgery, including all techniques with which a new anastomosis was created; Sury, nonrevision surgery, including all surgical procedures where the original AVF was preserved (eg mainstream banding, superficialization, and thrombectomy); VO, venous outflow stenosis, located >5 cm proximal of the anastomosis up until the distal edge of the subclavian vein.

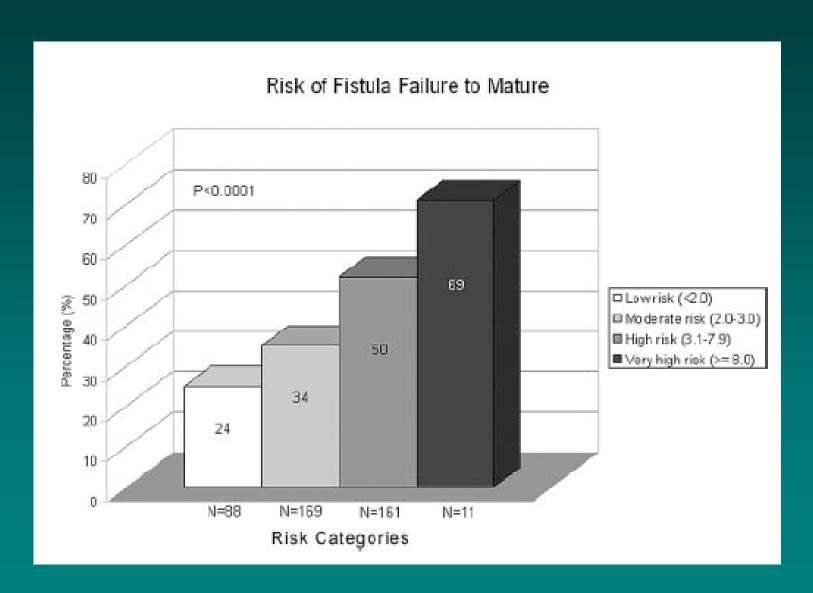
^{*1}Y PP: 1-year primary patency rate.

b1Y SP: 1-year secondary patency rate.

Risk Equation Determining Unsuccessful Cannulation Events and Failure to Maturation in Arteriovenous Fistulas (REDUCE FTM I)

Charmaine E. Lok,* Michael Allon,† Louise Moist,‡ Matthew J. Oliver,§ Hemal Shah,* and Deborah Zimmerman J Am Soc Nephrol 17: 3204–3212, 2006. doi: 10.1681/ASN.2006030190

- Risk factors for FTM in 422 patients receiving first AVF
- Risk Equation
 - Age ≥65 (OR: 2.23)
 - Peripheral VascularDisease (OR: 2.97)
 - Coronary ArteryDisease (OR: 2.83)
 - White Race (OR: 0.43)


- Scoring System
 - Base score "3"
 - Add score for factors
- Values
 - +2
 - +3
 - +2.5
 - -3

^{*} Factors NOT correlated with FTM: Diabetes, obesity, gender, smoking

Scoring System

- Total Score 0 to 10.5
- Risk for Failure to Mature validated in prospective in group of 445 patients receiving first AV Fistula

Score	Risk	FTM	Suggested Strategy
≤ 2	Low	24%	PE & Routine mapping
2-3	Moderate	34%	Add venography
3.1-7.9	High	50%	Intense follow-up
≥ 8	Very High	69%	Consider graft

T70 4 1		\sim		
Fistul	9	rag	tı.	Λn
1 1014	a	viva	LI	.,,,

Side: Right Left
Site/Type:_____
Surgeon:_____

Date:_____

Fistula Maturation Protocol

Examine at 4 weeks

Date.____

- 1. Is fistula adequate size for cannulation (>6 mm)?
- 2. Is fistula superficial (<6 mm deep)
- 3. Does fistula have a good continuous "thrill" & bruit without excessively pulsatile quality?

Attempt Needle Cannulation at 8 weeks

Date:_____

- 1. Begin single 17 gauge cannulation
- 2. Advance to 16 gauge and then 2 needles as able
- 3. Measure access flow after successful 2 needle cannulation (if available)

Cannulation Protocol available At www.fistulafirst.org

Refer to Interventionalist or Surgeon for evaluation and possible ultrasound examination or fistulogram.

Potential problems include:

- 1. Inadequate inflow
- 2. Venous outflow stenosis
- 3. "Deep" fistula requiring transposition.
- 4. Accessory veins limiting flow

Re-examine 4 weeks after intervention, or per recommendations of interventionalist.

Date:

Attempt fistula cannulation

Two weeks of continuous successful fistula cannulation?

Date:

Yes

Schedule catheter removal

No

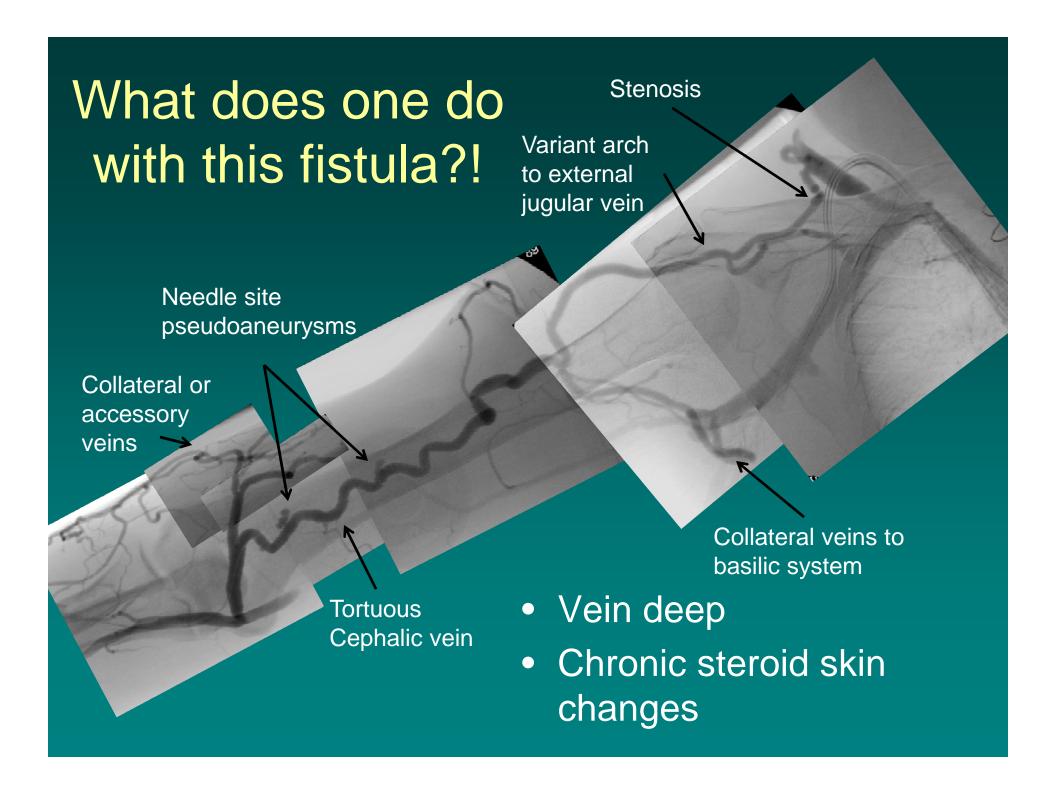
Refer to Interventionalist or Surgeon for evaluation

Successful cannulation?

After evaluation and/or intervention, attempt cannulation protocol.

If still not successful, patient should be referred back for re-evaluation every four weeks. Log dates here for interventional evaluation.

Date_____


Date_____ Date ____

Date ____

Fistula Maturation in CKD Patients not yet Receiving HD

- Reports demonstrate
 effective imaging, low risk for
 CIN with low-dose contrast in
 CKD patients
 - Asif et al, Semin Dial 18:239-242, 2005
 - 25 patients CKD 4 or 5
 - Venography using 10-20 cc
 - No CIN
 - Kian et al., KI 69:1444-9, 2006
 - 34 patients CKD-4
 - 65 studies
 - Mean contrast volume 7.8 cc
 - CIN in 4.6% at one week, no sequelae, returned to baseline

- Recommend:
 - Treat AVF maturation failure in CKD patients similar to ESRD
 - Low volume contrast
 - Targeted imaging
 - Be relatively patient
 - Don't wait for thrombosis
 - Don't wait until needed to start HD

What to do with this fistula?

- Opinions solicited from interventional online discussion group, nephrologists, radiologists, vascular surgeons
 - Abandon & place graft in same arm
 - Abandon & create new fistula in left arm
 - Angioplasty everything in sight
 - Stent-graft entire putative puncture segment
 - Surgically straighten, transpose, turndown to basilic vein
 - Attempt to use "as-is" with buttonhole needles

AV Fistula Maturation: Summary

- A "good" fistula will have
 - Thrill & high flow immediately post-creation
 - Dominant dilated superficial vessel
- Evaluate early for poor maturation
 - Inflow stenosis
 - Calcified radial artery
 - Sclerotic vein
 - Competing vein branches
 - Deep vein
- Don't wait months or years to intervene
 - Intervene early and often until usable or failed
 - Establish "forward progress"
- Abandon "hopeless" AVF sooner rather than later & create something better

AV Fistula Maturation Information

- Fistula First "Change Concepts"
 - 1. Routine CQI Review of Vascular Access
 - 2. Early referral to nephrologist
 - 3. Timely referral to surgeon for AVF "only"
 - 4. Surgeon selection based upon outcomes
 - 5. Utilize full range of techniques for AVF
 - 6. Secondary AVF
 - 7. Track catheters & convert to AVF
 - 8. Cannulation
 - 9. Monitoring & maintenance
 - 10. Education
 - 11. Outcomes Feedback